CHRIST KING HR. SEC. SCHOOL, KOHIMA
 CLASS -7
 SUBJECT - MATHEMATICS ($1^{\text {st }}$ Term 2020)

```
1 ST TERM SYLLABUS: 1. Knowing our Numbers (10 marks)
    2. Fractions (10 marks)
    4. Rational Numbers (12 marks)
    8. Ratio & Proportion (12 marks)
    10. Lines & Angles (10 marks)
    18. Probability (6 marks)
(NOTE: The words in italics are not part of the solution, but explanation on how it is solved for students understanding)
```


Exercise 1.1 (solutions)

```
1.
a) \((-3) \times(+5)=-15 \quad\) \{here, multiplying two unlike signs results in a negative sign. i.e., \(-x+=-\}\)
b) \((-7) \times(-3)=21 \quad\) \{here, multiplying two like signs results in a positive sign. i.e., \(-x-=+\}\)
e) \((-1861) \times 0=0 \quad\{h e r e\), any number multiplied with 0 always results in 0\}
l) \((+27) \times(+13)=351 \quad\) \{here, multiplying two like signs results in a positive sign. i.e., \(+x+=+\}\)
```

*note: A positive number may or may not be indicated with the + sign. eg: +351 is the same as 351 , both indicate positive number.
2.
**Rules for division of integers:
For integers of like signs, the quotient is positive. i.e., $+\div+=+$ and $-\div-=-$
For integers of unlike signs, the quotient is negative. i.e., $-\div+=-$ and $+\div-=-$
a) $(+8) \div(+2)=+4$ or 4
\{positive number can be written without the + sign $\}$
b) $(-24) \div(-8)=3$
c) $(+42) \div((-7)=-6$
d) $(-36) \div(+6)=6$
e) $0 \div(+29)=0$
\{any integer divided by 0 is always results in 0 \}

For Question 3 \& 4 refer for answers at the back of the book in the answer keys given.
5. (hint: similar method applied to the questions solved in Q.1)
a) $-6 \times-6=36$
c) $-8 \times 2=-1$
e) $-8 \times 0=0$
i) $+9 \times-3=-27$
6. (hint: similar method applied to the questions solved in Q.2)
a) $18 \div 3=6$
e) $-6 \div-3=2$
f) $20 \div-4=-5$
j) $-49 \div-7=7$
7. (*hint: same method as applied in solving Q2 \& Q6)
a) $\frac{-48}{-8}=6$
\{here, $-48 \div-8=6\}$
d) $\frac{-49}{7}=-7 \quad\{$ here, $-49 \div 7=-7\}$
8. **hint: Negative sign multiplied odd number of times results in a negative sign.

Negative sign multiplied even number of times results in a positive sign.
Positive signs multiplied always results in a positive sign.
c) $(-4) \times(-4) \times(-4)=-64$
e) $(-1) \times(-3) \times(+6)=18$
g) $(-70) \times(-35) \times 0 \times(-63)=0$

Exercise 1.2 (solutions)

$$
\begin{aligned}
& \text { 1. a) } 7+8+3+2=(7+3)+(8+2)=10+10=20 \\
& =20=10+10=20=20 \\
& =20=20=20=20 .
\end{aligned}
$$

b) $89+36+64+11$
$=(89+11)+(36+64)$
$=100+100$
$=200$
c) $43+21+79$
$=43+(21+79)$
$=43+100$
$=143$
2. (*refer COMMUTATIVE PROPERTY on pg. 13 and refer answer keys at the back page for answers)
3.
a) $(-18+4)+6=-18+(6+4)$

Sol: LHS $=(-18+4)+6 \quad\{$ when a number is negative and the other number is positive, we always subtract and keep the sign of the greater number)
$=-14+6$ \{here 18-4 = 14, and the sign of the greater number is negative, therefore it is -14$\}$
$=-8$ \{now that the bracket is solved, we subtract $14-6$ and keep the sign of the greater number. i.e., -8 \}

```
RHS=-18+(6+4)
    =-18+10
    =-8
```

Hence LHS $=$ RHS $=-8$
c) $(11+3)+(-9)=11+[3+(-9)]$
Sol: LHS $=(11+3)+(-9)$
$=14-9 \quad\{h e r e$, from the previous step we multiply the positive sign and the negative sign and get -9$\}$
$=5$
RHS $=11+[3+(-9)]$
$=11+[3-9]$
$=11+(-6)$
$=11-6$
= 5
Hence LHS $=$ RHS $=5$
4.
a) $(18-6)+3=18-(6+3) \quad$ f) $346-276=276-346$
Sol: LHS $=(18-6)+3$
$=12+3$
$=15$
RHS $=18-(6+3)$
$=18-9$
$=9$

In this case, LHS \neq RHS. Therefore the statement is false.
c) $(742-58)-10=742-(58-10)$

Sol: LHS $=(742-58)-10$
$=684-10$
$=674$

$$
\text { f) } 346-276=276-346
$$

Sol: LHS = 346-276
$=70$

RHS $=276-346$
$=-70$
In this case, LHS \neq RHS. Therefore the statement is false.
RHS $=742-(58-10)$
$=742-48$
$=694$

In this case, LHS \neq RHS. Therefore the statement is false.
\{**hint: refer PROPERTIES OF MULTIPLICATION in the textbook on pages $14 \& 15$ to understand better the solutions solved in Question No. 4$\}$
1.

-81	-72	-63	-54	-45	-36	-27	-18	-9	9	9	18	27	36	45	54	63	72	81
-72	-64	-56	-48	-40	-32	-24	-16	-8	8	8	16	24	32	40	48	56	64	72
-63	-56	-49	-42	-35	-28	-21	-14	-7	7	7	14	21	28	35	42	49	56	63
-54	-48	-42	-36	-30	-24	-18	-12	-6	6	6	12	18	24	30	36	42	48	54
-45	-40	-35	-30	-25	-20	-15	-10	-5	5	5	10	15	20	25	30	35	40	45
-36	-32	-28	-24	-20	-16	-12	-8	-4	4	4	8	12	16	20	24	28	32	36
-27	-24	-21	-18	-15	-12	-9	-6	-3	3	3	6	9	12	15	18	21	24	27
-18	-16	-14	-12	-10	-8	-6	-4	-2	2	2	4	6	8	10	12	14	16	18
-9	-8	-7	-6	-5	-4	-3	-2	-1	1	1	2	3	4	5	6	7	8	9
-9	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7	8	9
9	8	7	6	5	4	3	2	1	-1	-1	-2	-3	-4	-5	-6	-7	-8	-9
18	16	14	12	10	8	6	4	2	-2	-2	-4	-6	-8	-10	-12	-14	-16	-18
27	24	21	18	15	12	9	6	3	-3	-3	-6	-9	-12	-15	-18	-21	-24	-27
36	32	28	24	20	16	12	8	4	-4	-4	-8	-12	-16	-20	-24	-28	-32	-36
45	40	35	30	25	20	15	10	5	-5	-5	-10	-15	-20	-25	-30	-35	-40	-45
54	48	42	36	30	24	18	12	6	-6	-6	-12	-18	-24	-30	-36	-42	-48	-54
63	56	49	42	35	28	21	14	7	-7	-7	-14	-21	-28	-35	-42	-49	-56	-63
72	64	56	48	40	32	24	16	8	-8	-8	-16	-24	-32	-40	-48	-56	-64	-72
81	72	63	54	45	36	27	18	9	-9	-9	-18	-27	-36	-45	-54	-63	-72	-81

**hint: multiply the numbers diagonally.
**Also applying the basic rules of multiplying like signs and unlike signs. i.e., $-x-=+;+x+=+;-x+=-;+x-=-$
2.
b) $[(-7) \times(-9)] \times 3=(-7) \times[(-9) \times(3)]$
\{**To understand better in solving this set of questions, refer textbook pg. $16 \& 17$ SIMPLIFICATION OF EXPRESSIONS\}
Sol: LHS $=[(-7) \times(-9)] \times 3$
$=63 \times 3$

$$
=189
$$

RHS $=(-7) \times[(-9) \times(3)]$

$$
=(-7) \times(-27)
$$

$$
=189
$$

Hence, LHS = RHS = 189
3. ** Refer COMMUTATIVE PROPERTY of MULTIPLICATION in the textbook on pg. 14 for better understanding on how to solve and the answer key at the backpage for answers.

```
4 .
```

a) $2+\underline{0}=0$
b) $1+(-1)=\underline{0}$
c) $4+(-4)=\underline{0}$
d) $\underline{-3}+3=0$
e) $\underline{-1}+1=0$
f) $-3+\underline{3}=0$

```
5. Refer back page answer keys for answers.
6.
b) \(72(36+14)\)
Sol: \(72 \times 50\)
\{always solve the sum inside the bracket, if any first. Then, open the bracket and work out the next step to arrive at the final answer\} \(=3600\)
d) \((-6) \times 30+(-6) \times 20\)
Sol: \((-6) \times[30+20] \quad\{\) here we apply distributive property, i.e., multiplication distributes over addition\}
\(=(-6) \times 50\)
\(=-300\)
e) \(18 \times(-16)+2 \times(-16)\)
\(\begin{aligned} & \text { Sol: }(-16) \times[18+2] \quad \text { \{here, we apply distributive property } \\ &=(-16) \times 20\end{aligned}\)
\[
=(-16) \times 20
\]
\[
=-320
\]
h) \(76+(-18)+76 \times 18\)
Sol: \(76 \times[-18+18]\)
\(=76 \times 0\)
\(=0\)
i) \(1673 \times 99-(-1673)\)
Sol: \(1673 \times 99+1673\)
\(=165627+1673\)
\(=167300\)
7.
**NOTE: in this set of questions, we apply the BODMAS rule. Refer pg. 16 \& 17 in textbook.
** Very often we use more than one set of brackets. In such cases, the expressions within the brackets are simplified in the order \({ }^{-}\), ( ), \{ \}, and [ ].
a) \((-21) \times[(+16)+(-13)]\)
Sol: \((-21) \times[+16-13]\)
\(=(-21) \times 3\)
\(=-63\)
```

```
9.
c) }-7+2\times(-3)+3-(-10)-48\div
Sol: -7+2\times(-3)+3+10-8=-21+13
    =-7-6+3+10-8=}=-
d) }-17+[2-{(-8)+3-(9\times\overline{6+1}-13\times3)}
Sol: -17 + [2-{(-8) + 3-( 9 < 7-13 < 3)}]
    =-17+[2-{(-8)+3-(63-39)}]
    =-17+[2-{(-8)+3-24}]
    =-17+[2-{-32+3}]
    =-17 +[2 - (-29)]
    =-17 + [ 2 + 29]
    =-17+31
    = 14
```


EXERCISE: 1.4

```
1.
Sol: Balance on 01.01.2014 = ₹ 2500
Money deposited in January = ₹ 1250
Money withdrawn in February = ₹ 750
Money in his account in February \(=₹(2500+1250-750)\)
\[
\text { = ₹ } 3750-750
\]
\[
\text { = ₹ } 3000
\]
Money deposited in March = ₹ 500
Money withdrawn in March = ₹300
Therefore balance on 01.04.2014 =₹ \((3000+500-300)\)
\[
\text { = ₹ } 3500-300
\]
\[
\text { = ₹ } 3200
\]
3.
Sol: Let the other number be \(x\)
One of the numbers \(=-7\)
Product of the numbers \(=105\)
A.P.Q
\(x \times-7=105\)
\(X=105 \div-7\)
\(=-15\)
```

```
Therefore the other number = x
= -15
4.
Sol: Original cost of one book = ₹96
    Then, cost of 60 books = ₹ 96 × 60
                        = ₹ }576
Since there was a mistake of taking ₹ 5 less of each book in the bill,
Cost calculated \(=₹ 91 \times 60\)
= ₹ 5460
Therefore difference in the bill = ₹ 5760 - ₹ 5460
= ₹ 300
6.
Sol: Depth dived on the first day \(=5 \mathrm{~m}\)
Depth dived on the second day \(=5 \mathrm{~m}+5 \mathrm{~m}\)
\(=10 \mathrm{~m}\)
Depth dived on the third day \(=10 \mathrm{~m}+5 \mathrm{~m}\)
\[
=15 \mathrm{~m}
\]
Depth dived on the fourth day \(=15 \mathrm{~m}+5 \mathrm{~m}\)
\[
=20 \mathrm{~m}
\]
Depth dived on the fifth day \(=20 \mathrm{~m}+5 \mathrm{~m}\) \(=25 \mathrm{~m}\)
8.
Sol: Given,
Speed of the submarine per minute \(=(-20) \mathrm{m}\)
Distance of the submarine from the water surface at the end of 7 minutes \(=7 \times(-20) \mathrm{m}\)```

